Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Chaos, Solitons & Fractals ; : 112920, 2022.
Artículo en Inglés | ScienceDirect | ID: covidwho-2122377

RESUMEN

The world experienced the life-threatening COVID-19 disease worldwide since its inversion. The whole world experienced difficult moments during the COVID-19 period, whereby most individual lives were affected by the disease socially and economically. The disease caused millions of illnesses and hundreds of thousands of deaths worldwide. To fight and control the COVID-19 disease intensity, mathematical modeling was an essential tool used to determine the potentiality and seriousness of the disease. Due to the effects of the COVID-19 disease, scientists observed that vaccination was the main option to fight against the disease for the betterment of human lives and the world economy. Unvaccinated individuals are more stressed with the disease, hence their body’s immune system are affected by the disease. In this study, the SVEIHR deterministic model of COVID-19 with six compartments was proposed and analyzed. Analytically, the next-generation matrix method was used to determine the basic reproduction number (R0). Detailed stability analysis of the no-disease equilibrium (E0) of the proposed model to observe the dynamics of the system was carried out and the results showed that E0 is stable if R0<1 and unstable when R0>1. The Bayesian Markov Chain Monte Carlo (MCMC) method for the parameter identifiability was discussed. Moreover, the sensitivity analysis of R0 showed that vaccination was an essential method to control the disease. With the presence of a vaccine in our SVEIHR model, the results showed that R0=0.208, which means COVID-19 is fading out of the community and hence minimizes the transmission. Moreover, in the absence of a vaccine in our model, R0=1.7214, which means the disease is in the community and spread very fast. The numerical simulations demonstrated the importance of the proposed model because the numerical results agree with the sensitivity results of the system. The numerical simulations also focused on preventing the disease to spread in the community.

2.
Results Phys ; 37: 105503, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1799737

RESUMEN

COVID-19 epidemic has posed an unprecedented threat to global public health. The disease has alarmed the healthcare system with the harm of nosocomial infection. Nosocomial spread of COVID-19 has been discovered and reported globally in different healthcare facilities. Asymptomatic patients and super-spreaders are sough to be among of the source of these infections. Thus, this study contributes to the subject by formulating a S E I H R mathematical model to gain the insight into nosocomial infection for COVID-19 transmission dynamics. The role of personal protective equipment θ is studied in the proposed model. Benefiting the next generation matrix method, R 0 was computed. Routh-Hurwitz criterion and stable Metzler matrix theory revealed that COVID-19-free equilibrium point is locally and globally asymptotically stable whenever R 0 < 1 . Lyapunov function depicted that the endemic equilibrium point is globally asymptotically stable when R 0 > 1 . Further, the dynamics behavior of R 0 was explored when varying θ . In the absence of θ , the value of R 0 was 8.4584 which implies the expansion of the disease. When θ is introduced in the model, R 0 was 0.4229, indicating the decrease of the disease in the community. Numerical solutions were simulated by using Runge-Kutta fourth-order method. Global sensitivity analysis is performed to present the most significant parameter. The numerical results illustrated mathematically that personal protective equipment can minimizes nosocomial infections of COVID-19.

3.
Comput Math Methods Med ; 2022: 7772263, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1625636

RESUMEN

COVID-19 is a world pandemic that has affected and continues to affect the social lives of people. Due to its social and economic impact, different countries imposed preventive measures that are aimed at reducing the transmission of the disease. Such control measures include physical distancing, quarantine, hand-washing, travel and boarder restrictions, lockdown, and the use of hand sanitizers. Quarantine, out of the aforementioned control measures, is considered to be more stressful for people to manage. When people are stressed, their body immunity becomes weak, which leads to multiplying of coronavirus within the body. Therefore, a mathematical model consisting of six compartments, Susceptible-Exposed-Quarantine-Infectious-Hospitalized-Recovered (SEQIHR) was developed, aimed at showing the impact of stress on the transmission of COVID-19 disease. From the model formulated, the positivity, bounded region, existence, uniqueness of the solution, the model existence of free and endemic equilibrium points, and local and global stability were theoretically proved. The basic reproduction number (R 0) was derived by using the next-generation matrix method, which shows that, when R 0 < 1, the disease-free equilibrium is globally asymptotically stable whereas when R 0 > 1 the endemic equilibrium is globally asymptotically stable. Moreover, the Partial Rank Correlation Coefficient (PRCC) method was used to study the correlation between model parameters and R 0. Numerically, the SEQIHR model was solved by using the Rung-Kutta fourth-order method, while the least square method was used for parameter identifiability. Furthermore, graphical presentation revealed that when the mental health of an individual is good, the body immunity becomes strong and hence minimizes the infection. Conclusively, the control parameters have a significant impact in reducing the transmission of COVID-19.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Cuarentena , SARS-CoV-2 , Estrés Fisiológico , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/fisiopatología , Biología Computacional , Simulación por Computador , Humanos , Conceptos Matemáticos , Modelos Estadísticos , Pandemias/estadística & datos numéricos , Cuarentena/psicología , Estrés Psicológico
4.
Results Phys ; 29: 104731, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1404830

RESUMEN

Corona-virus disease 2019 (COVID-19) is an infectious disease that has affected different groups of humankind such as farmers, soldiers, drivers, educators, students, healthcare workers and many others. The transmission rate of the disease varies from one group to another depending on the contact rate. Healthcare workers are at a high risk of contracting the disease due to the high contact rate with patients. So far, there exists no mathematical model which combines both public control measures (as a parameter) and healthcare workers (as an independent compartment). Combining these two in a given mathematical model is very important because healthcare workers are protected through effective use of personal protective equipment, and control measures help to minimize the spread of COVID-19 in the community. This paper presents a mathematical model named SWE IsIa HR; susceptible individuals (S), healthcare workers (W), exposed (E), symptomatic infectious ( Is ), asymptomatic infectious ( Ia ), hospitalized (H), recovered (R). The value of basic reproduction number R0 for all parameters in this study is 2.8540. In the absence of personal protective equipment ξ and control measure in the public θ , the value of R0≈4.6047 which implies the presence of the disease. When θ and ξ were introduced in the model, basic reproduction number is reduced to 0.4606, indicating the absence of disease in the community. Numerical solutions are simulated by using Runge-Kutta fourth-order method. Sensitivity analysis is performed to presents the most significant parameter. Furthermore, identifiability of model parameters is done using the least square method. The results indicated that protection of healthcare workers can be achieved through effective use of personal protective equipment by healthcare workers and minimization of transmission of COVID-19 in the general public by the implementation of control measures. Generally, this paper emphasizes the importance of using protective measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA